ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Kristel Ghoos, Tucker McClanahan, Lukas Zavorka, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 370-380
Research Article | doi.org/10.1080/00295639.2023.2233858
Articles are hosted by Taylor and Francis Online.
To organize the safe handling of activated material, knowing the residual dose rates is crucial. In this work, we present the pre-experiment activation analysis for an experiment in which tungsten blocks are irradiated by 800-MeV protons. In this analysis, we use the Monte Carlo N-Particle (MCNP) code for radiation transport, Attila4MC for unstructured mesh generation, and Activation in Accelerator Radiation Environments (AARE), including CINDER2008, for activation analysis. If the tungsten blocks must be removed within a day after the experiment, then exposure to personnel entering the room must be reduced. One exposure-reduction strategy is to add carbon steel shielding around the tungsten blocks, efficiently reducing the dose from the activated tungsten. However, the shielding becomes activated itself during irradiation: 56Mn is the dominant contributor for short decay times. The actual schedule at the time of the experiment allowed sufficient cool-off time for the tungsten in the room so that additional shielding was not necessary. A less rigorous comparison of the calculated values with the post-experiment measurements showed reasonable agreement.