ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Noriaki Nakao, Toshiya Sanami, Tsuyoshi Kajimoto, Robert Froeschl, Davide Bozzato, Elpida Iliopoulou, Angelo Infantino, Hiroshi Yashima, Eunji Lee, Takahiro Oyama, Masayuki Hagiwara, Seiji Nagaguro, Tetsuro Matsumoto, Akihiko Masuda, Yoshitomo Uwamino, Stefan Roesler, Markus Brugger
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 336-347
Research Article | doi.org/10.1080/00295639.2023.2196228
Articles are hosted by Taylor and Francis Online.
Measurements of high-energy neutrons through shield penetration and maze streaming were performed at the Conseil Européen pour la Recherche Nucléaire (CERN) High-energy Accelerator Mixed-Field (CHARM) facility. The protons of 24 GeV/c were injected onto a 50-cm-thick copper target and the released neutrons were transmitted through shields and a maze in the facility. The transmitted neutrons in the shield and maze were measured using activation detectors placed behind various materials and thicknesses of the shields and at several locations in the maze. From the radionuclide production rates in the activation detectors, the attenuation profiles though the shield thickness and along the maze were obtained for the reactions of 209Bi(n,xn)210-xBi(x = 4–9), 27Al(n,α)24Na, 115In(n,n’)115mIn, and 12C(n,2n)11C. Monte Carlo simulations were performed with three codes, PHITS, FLUKA, and GEANT, which had good agreement with the measurements within a factor of 2 for the production rates.