ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Tran Kim Tuyet, Alexis Jinaphanh, Cédric Jouanne, Frédéric Gérardin, Sébastien Lemaire, Andrea Zoia
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 319-335
Research Article | doi.org/10.1080/00295639.2023.2195925
Articles are hosted by Taylor and Francis Online.
In view of their key role in radiation shielding and nuclear instrumentation applications, photonuclear reactions are receiving growing attention. In this work, we compare the results of the Monte Carlo codes TRIPOLI4®, DIANE, and MCNP® with respect to the Barber and George (B&G) benchmark, with the aim of assessing the accuracy of both nuclear data and particle transport codes for the simulation of photonuclear reactions. We compute the photoneutron yield resulting from the Bremsstrahlung radiation induced by a monoenergetic electron beam (10.5 to 35.5 MeV) impinging on C, Al, Cu, Pb, Ta, and U material targets. The simulation specifications closely follow those of the B&G experiment. For all codes, the reference nuclear data libraries are ENDF/B-VII.1 for neutron transport and photonuclear reactions and EPDL97/EEDL97 for photon/electron transport. Comparisons of the simulation results show an overall agreement between the codes and experimental data and in-between codes, despite some discrepancies.
In order to investigate these effects, we performed a sensitivity analysis by tallying the photon production in addition to neutron production by replacing the electron source with a pure photon source (to single out the impact of electron transport) and by replacing the ENDF/B-VII.1 library with the IAEA/PD-2019. The major contribution to the observed discrepancies is found to be related to the electromagnetic shower models used for coupled electron-photon transport in Monte Carlo codes.