ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Kumar S. Mohindroo, Thomas Miller, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 311-318
Research Article | doi.org/10.1080/00295639.2023.2191584
Articles are hosted by Taylor and Francis Online.
The Second Target Station project at Oak Ridge National Laboratory will develop a cold neutron source to meet growing experimental needs. This paper describes calculations of the residual dose rates associated with the monolith shield plug and the beamline bunker, two key conventional operations and radiation safety features. While neutron production is active, the instrument hall outside the bunker must be generally accessible with dose rates of less than 0.25 mrem/h. When neutron production is halted, the bunker must be accessible for hands-on maintenance operations. These two requirements form the cause for the assessments reported herein of residual dose rates caused by the monolith shield plug and residual dose rates in the bunker. The monolith shield plug was shown to not produce significant dose rates inside the bunker after a 20-year lifetime, and the residual dose rates inside the bunker for the case of an operating beamline were shown to reasonably allow for hands-on maintenance. These calculations are based on preliminary design models of the relevant systems. Additionally, an example showing the significance of considering neutron supermirror physics in transport calculations that track nuclide production and destruction rates to produce gamma sources for residual dose rate calculations is included. The example shows that if neutron supermirror physics is not considered, dose rate fields may be significantly underpredicted.