ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 287-299
Research Article | doi.org/10.1080/00295639.2022.2161279
Articles are hosted by Taylor and Francis Online.
Application of perturbation capabilities for density sensitivities in Monte Carlo radiation transport codes has been limited because changing source nuclide densities or source material densities changes the intrinsic source, and in most Monte Carlo codes, the user-input source is independent of the user-input materials. The perturbation capability then has no way of accounting for changes in the intrinsic source. This paper derives the sensitivity of a response with respect to a source nuclide density in terms of a portion due to the transport operator and a portion due to the source rate density. The Monte Carlo perturbation method computes the portion due to the transport operator, and the portion due to the source rate density is computed in postprocessing using parameters from the precomputed intrinsic source calculation. This paper derives first- and second-order sensitivities. The equations require the response to be separated by contribution from each of the sources modeled. A test problem containing several (α,n) and spontaneous fission neutron sources verifies the method.