ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mónica Chillarón Pérez, Vicente E. Vidal, Gumersindo J. Verdú, Gregorio Quintana-Ortí
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 193-206
Research Article | doi.org/10.1080/00295639.2023.2199677
Articles are hosted by Taylor and Francis Online.
The use of iterative algebraic methods applied to the reconstruction of computed tomography (CT) medical images is proliferating to reconstruct high-quality CT images using far fewer views than through analytical methods. This would imply reducing the dose of X-rays applied to patients who require this medical test. Least-squares methods are a promising approach to reconstruct the images with few projections obtaining high quality. In addition, since these techniques involve a high computational load, it is necessary to develop efficient methods that make use of high-performance-computing tools to accelerate reconstructions. In this paper, three least-squares methods are analyzed—Least-Squares Model Based (LSMB), Least-Squares QR (LSQR), and Least-Squares Minimal Residual (LSMR)—to determine whether the LSMB method provides faster convergence and thus lower computational times. Moreover, a block version of both the LSQR method and the LSMR method was implemented. With them, multiple right-hand sides (multiple slices) can be solved at the same time, taking advantage of the parallelism obtained with the implementation of the methods using the Intel Math Kernel Library. The two implementations are compared in terms of convergence, time, and quality of the images obtained, reducing the number of projections and combining them with a regularization and acceleration technique. The experiments show how the implementations are scalable and obtain images of good quality from a reduced number of views, with the LSQR method being better suited for this application.