ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yoshihiro Hirao, Koichi Okuno, Ken-ichi Kimura, Mikihiro Nakata, Tomohiro Ogata, Yukio Sakamoto, Ken-ichi Tanaka, Koji Oishi, Satoshi Ishikawa, Masahiro Yoshida, Toshio Amano, Kazuaki Kosako, Toshinobu Maenaka
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 185-192
Research Article | doi.org/10.1080/00295639.2023.2177077
Articles are hosted by Taylor and Francis Online.
The working group on shielding materials under the Standards Committee of the Atomic Energy Society of Japan has been studying the standard composition of shielding concrete that has a clear basis for use in the design of Japanese facilities. The policy for determining the composition, the procedure of study, the results obtained to date, and future tasks are described. Concrete is broadly classified into silicon type and calcium type depending on the aggregate. The reference mix design and composition were selected from the Japanese recommendation, and minor elements in the composition were replaced with silicon and calcium while preserving their weight in order to reduce regional differences. However, the penetration dose calculation for 235U thermal fission neutrons indicated that iron and carbon should be retained. The penetration dose calculations for photons from 235U prompt fission and radioisotopes showed that the attenuation ratios of silicon-type and calcium-type concretes differ in the energy region where electron pair production becomes dominant. The water content of concrete was found to vary with thickness as a result of moisture migration analysis over time. Finally, a draft composition of silicon-type concrete by thickness was determined using the residual water content at 60 years after placement. A method for correcting the elemental content under different mix conditions was also proposed.