ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Claudia Ahdida, Elzbieta Nowak, Christelle Saury, Heinz Vincke, Helmut Vincke
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 175-184
Research Article | doi.org/10.1080/00295639.2023.2204183
Articles are hosted by Taylor and Francis Online.
A comprehensive study of the radiological CNGS (CERN Neutrinos to Gran Sasso Experiment) environment characterization is presented. It comprises the evaluation of the residual dose rates of the most relevant standalone beam line equipment, such as the target and horn, as well as overall dose levels in the cavern before and after dismantling. Furthermore, the radionuclide inventories of the main objects to be dismantled were calculated by the Monte Carlo FLUKA code and ActiWiz. The latter is particularly important for transport and waste management. Moreover, we present benchmarking measurements of residual dose rates in the experimental cavern, staying in good agreement with simulation predictions. Additional measurements, as well as FLUKA and ActiWiz studies, allowed for assessing the concrete composition of the cavern’s walls and floor and the shielding blocks. The resulting refined composition allowed for evaluating more precisely the radionuclide inventories and residual dose rates expected before and after the dismantling in the CNGS target area. This was particularly important for the evaluation of the dismantling cost and the substantial savings due to the reusage of the majority of the concrete blocks. Finally, contamination measurements in the accessible parts of the area also are included. All the results discussed are crucial for determining the requirements, planning, and costs of the CNGS dismantling.