ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
G. Santistevan, R. Bentley, D. Wells, A. Hutton, A. Stavola, S. Benson, K. Jordan, J. Gubeli, P. Degtiarenko, L. Dabill
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 167-173
Note | doi.org/10.1080/00295639.2023.2178232
Articles are hosted by Taylor and Francis Online.
Copper-67 is a radioisotope of interest for medical imaging and therapy as well as for understanding stellar and interstellar evolution pertaining to the formation of proton-rich nuclei. Since 67Cu decays 100% to 67Zn, understanding this reaction can shed light on the abundance of this and other p-nuclei elements in the universe. Here, the photonuclear production of 67Cu from 71Ga and natural gallium is examined as an alternative to its photoproduction from zinc. Two research and development production runs were performed at Thomas Jefferson National Accelerator Facility using an electron linac. During the first run, an 805-W, 30.9-MeV beam was used to irradiate a 1-mm tungsten radiator to create a bremsstrahlung flux. The resulting gamma photons irradiated 50.9 g of natural gallium encased in a graphite crucible for 24.2 h; 7.02 Bq/W∙s∙kg of 67Cu activity was produced. During the second run, a 4380-W, 31.5-MeV beam was used for 12.0 h on the same target containing 60 g of natural gallium; 6.41 Bq/W∙s∙kg of 67Cu activity was produced. Because of the difficulties in spectroscopically differentiating 67Cu from 67Ga, prior to each run, an isotopically pure 71Ga disk was irradiated using a 100-W beam for 1 h, at the same respective energies. These baseline irradiations allowed for separation of 67Cu from 67Ga in the spectroscopic measurements of the natural gallium targets.