ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert Bentley, Geno Santistevan, Douglas Wells, Andrew Hutton, Adam Stavola, Steve Benson, Kevin Jordan, Joe Gubeli, Pavel Degtiarenko, Lila Dabill
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 158-166
Research Article | doi.org/10.1080/00295639.2023.2180265
Articles are hosted by Taylor and Francis Online.
This research explored the development of the photonuclear production method of Cu from Ga as well as Sc from V. Both products serve as high-demand research medical radioisotopes. Furthermore, an understanding of these reactions is significant to fundamental nuclear physics and astrophysics. Bremsstrahlung flux was induced by an electron linac and a 1-mm tungsten radiator. Irradiation of gallium oxide powder, 98.78% pure Ga, and a natural vanadium foil at 30.9 MeV and 100 W for 1 h produced 64.4 ± 0.4 Bq/W·s·kg of Cu and 164 ± 3.1 Bq/W·s·kg of Sc. A secondary irradiation with 99.6% pure Ga and natural vanadium at 31.5 MeV and 100 W for 1.1 h produced 79.8 ± 0.9 Bq/W·s·kg of Cu and 136 ± 7.2 Bq/W·s·kg of Sc. The photoinduced activation is promising; however, further research into optimal geometry and power is required to maximize specific activity. Natural nickel was also irradiated to serve as a benchmark comparison. Effective cross sections for each reaction were inferred.