ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Zhihan Hu, Lin Shao
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 145-157
Research Article | doi.org/10.1080/00295639.2023.2224468
Articles are hosted by Taylor and Francis Online.
Impurities such as carbon atoms play a significant role in the void swelling of irradiated metals. The phenomenon is important to both materials designs in which impurities are intentionally introduced and accelerator-based ion irradiation testing in which impurities are introduced unintentionally as contaminants. Here, we report rate theory simulations of void nucleation in pure Fe, which are irradiated by 5-MeV Fe ions, as one typical irradiation condition used in nuclear material testing. Based on kinetics obtained previously from ab initio calculations, Multiphysics Object-Oriented Simulation Environment (MOOSE)–based numerical solvers were used to simulate defect distributions and void nucleation. Vacancy-carbon interactions increase the effective migration energies of carbon and decrease the diffusivity prefactors. The vacancy mobility reduction decreases both interstitial flux and vacancy flux. However, the vacancy flux reduction is more significant than that of interstitials, leading to reduced void nucleation in bulk. On the other hand, reduced vacancy flux toward the surface leads to local vacancy pileups, leading to locally enhanced void nucleation. These two combined effects make the void nucleation profile deviate from the displacements per atom (dpa) peak, and void swelling peaks shift to the near-surface region. The transition from deep swelling to near-surface swelling is plotted as a function of dpa rate, carbon concentration, and temperature. The study shows that the swelling peak shifting caused by the carbon effect can be avoided by either reducing dpa rates or increasing irradiation temperatures. The study is important to understand swelling behaviors and to optimize irradiation parameters for accelerator-based swelling testing.