ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Thomas Leadbeater, Andy Buffler, Michael van Heerden, Ameerah Camroodien, Deon Steyn
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 121-137
Research Article | doi.org/10.1080/00295639.2023.2171234
Articles are hosted by Taylor and Francis Online.
Positron Emission Particle Tracking (PEPT) is a radioactive tracer-based approach to studying dynamic physical processes and multiphase flows. Short-lived positron-emitting isotopes are loaded onto suitable substrates used as tracer particle flow followers in physical and engineering-relevant systems. Coincident photons from electron-positron annihilation are detected using large arrays of pixelated scintillators, with the reconstructed photon trajectories collectively used to determine tracer particle dynamics. We have developed indirect radiochemical, and direct physical activation, techniques for producing tracer particles for such studies, and we report on the current state of the art with focus on the direct approach with high-energy alpha-particle beams. The 16O(α,x)18F reactions have been explored as viable candidates in producing the pure positron emitter 18F from natural 16O-bearing targets. Silicon dioxide (SiO2) glass spheres of diameters of 5 to 10 mm were irradiated in a 100-MeV alpha-particle beam of around 800-nA current for approximately 2 h. Radioisotope activation yields were characterized by half-life measurements and gamma-ray spectroscopy, with the highest yield being 18F (<2.5 mCi). Contaminants from other reaction channels were observed and characterized, including the positron emitter 43Sc and negative beta emitter 24Na, produced from alpha and neutron activation of contaminant species in the target material, respectively. The activation technique is shown to be a reasonable candidate to complement and enhance existing tracer particle production techniques for PEPT and other radiotracer-based studies.