ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 109-120
Research Article | doi.org/10.1080/00295639.2023.2175582
Articles are hosted by Taylor and Francis Online.
Conditions that maximize the performance of an accelerator-driven system related to particle beam and energy and accelerator type are analyzed. The toolkit Geant4 simulated the interaction of protons and ions with masses up to 20Ne and energies from 0.2 to 2 GeV/n. The beam intensity considered is 1.5 × 1016 p/s. The core of the reactor is modeled as an assembly of fuel rods surrounding a cylindrical beryllium converter, with a criticality coefficient of 0.985 and lead-bismuth eutectic coolant. Lower enrichment generates better utilization of fuel (20% to 25% from the initial actinide mass can fission in a cycle keeping neutron damage in clad below 200 displacements per atom). Data on particle fluence and energy released obtained from the simulation are used to calculate total electric power produced and isotope evolution. Power spent to accelerate the beam depends on accelerator type and is calculated by scaling from data on accelerator efficiency for a reference particle. Optimal proton energy is ~1.5 GeV when the beam is accelerated in a linac with energy gain G ~ 14 and is 0.75 to 1 GeV in the case of a cyclotron (G ~ 12). Ion beams starting with 4He realize higher G values than protons: 20 to 50 in a linac and 15 to 35 in a cyclotron.