ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ARG-US Remote Monitoring Systems: Use Cases and Applications in Nuclear Facilities and During Transportation
As highlighted in the Spring 2024 issue of Radwaste Solutions, researchers at the Department of Energy’s Argonne National Laboratory are developing and deploying ARG-US—meaning “Watchful Guardian”—remote monitoring systems technologies to enhance the safety, security, and safeguards (3S) of packages of nuclear and other radioactive material during storage, transportation, and disposal.
Peter Norgard, Bradley D. Jeffries, Barry Higgins, John M. Gahl, J. David Robertson
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 83-91
Research Article | doi.org/10.1080/00295639.2023.2173965
Articles are hosted by Taylor and Francis Online.
An available supply of high-specific-activity radioisotopes was identified by the U.S. Department of Energy as a critical priority to the development and eventual deployment of next-generation medical diagnostic and cancer therapy tools. Work at the University of Missouri Research Reactor Center has been undertaken to develop an electromagnetic isotope separation technique that will leverage the production capabilities of the 10-MW reactor to provide radiolanthanides in quantities suitable for use in preclinical trials. A high-throughput concept design based on a solid tantalum hot surface ion source and an insertable titanium crucible will be described. Significant aspects of the electrical and thermal design of the ion source will be presented. Novel heating and cooling strategies were employed to concentrate heating where it is most needed while attempting to reduce thermal stress where heating is not required. Thermal testing from the commissioning process will be presented to demonstrate the temperature at several key locations in and around the ion source.