ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Huan Jia, Haihua Niu, Han-Jie Cai, Chenzhang Yuan, Xunchao Zhang, Yuanshuai Qin, Hongming Xie, Baifan Wang, Peng Zhang, Yuxuan Huang, Tieming Zhu, Tianji Peng, Weilong Chen, Qingwei Chu, Jianqiang Wu, Shenghu Zhang, Xiang Li, Duanyang Jia, Bin Zhang, Yuan He, Hongwei Zhao, Wenlong Zhan
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 64-73
Research Article | doi.org/10.1080/00295639.2022.2164149
Articles are hosted by Taylor and Francis Online.
The Chinese Accelerator Front end (CAFe) is a demo superconducting proton linac for an accelerator-driven subcritical system (ADS). It includes an electron-cyclotron resonance ion source, a low-energy transport line, a radio-frequency quadrupole, a medium-energy transport line, a superconducting section, a high-energy transport line, and a beam dump. The design energy and current are 20 MeV and 10 mA, with a beam power of 200 kW. The goal of the CAFe is to demonstrate the 10-mA ability of a full superconducting linac, especially in the low-energy region. In previous beam commissioning, the maximum beam power achieved was 34 kW, which was limited by the capacity of the beam dump. Thus, for the high-power beam commissioning of CAFe, a new 200-kW beam dump has been designed and developed. Based on the thermal analysis, a maximum power density of 200 W/cm2 is adopted for the dump. To avoid a high-level residual dose, the material of the dump is aluminum alloy (Al6063). The dump is a conical structure, with water flow in the interlayer. During beam commissioning, the dump withstood 200-kW proton beam power and collected a total charge of 2049 mAh.