ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
NRC okays construction permits for Hermes 2 test facility
The Nuclear Regulatory Commission announced yesterday that it has directed staff to issue construction permits to Kairos Power for the company's proposed Hermes 2 nonpower test reactor facility to be built at the Heritage Center Industrial Park in Oak Ridge, Tenn. The permits authorize Kairos to build a facility with two 35-MWt test reactors that would use molten salt to cool the reactor cores.
Ahmed Badruzzaman
Nuclear Science and Engineering | Volume 198 | Number 1 | January 2024 | Pages 7-30
Research Article | doi.org/10.1080/00295639.2023.2177073
Articles are hosted by Taylor and Francis Online.
Accelerators have been integral to subsurface probing for decades. Tools with deuterium-tritium (D-T) generators and scintillators utilizing gamma rays from thermal neutron capture, inelastic scattering, and activation are routine in cased-hole logging tools for reservoir and well monitoring to locate and quantify remaining hydrocarbons prior to initiating secondary or tertiary production. X-ray and neutron generators field-tested to, respectively, replace 137Cs and americium-beryllium (Am-Be) source tools that measure two bulk parameters, formation density and neutron porosity critical for initial characterization of formations, have yielded mixed results. D-T generator-based spectroscopy tools with advanced scintillators that can record both inelastic and capture n-gamma spectra, faster and with much better energy resolution, to provide a more complete mineralogy appear poised to replace Am-Be–based mineralogy tools. In view of their ability to measure both bulk and spectral parameters, accelerator-based nuclear methods appear attractive to extract additional geological information needed to transition to a low-carbon energy future.
The paper discusses the current state of application of accelerator-based subsurface probing techniques, notes their potential for nonpetroleum applications, and concludes by briefly exploring technology advances that could significantly advance the state of the art.