ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jeremy W. King, Craig M. Marianno, Sunil S. Chirayath
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3125-3137
Regular Research Article | doi.org/10.1080/00295639.2023.2191579
Articles are hosted by Taylor and Francis Online.
Pending the availability of an operational long-term spent nuclear fuel (SNF) repository or other disposal methods, SNF will be increasingly stored in interim dry casks. Casks loaded with commercial SNF may contain several significant quantities of plutonium, so appropriate nuclear material safeguards monitoring is in order. An external remote monitoring system (RMS) developed by researchers at Texas A&M University is proposed to further the current dry cask safeguards regime, which is limited to containment and surveillance mechanisms. In this study, neutron measurements of SNF in dry cask storage were performed with the external RMS at a commercial interim spent fuel storage installation. Corresponding neutron transport simulations using MCNP were conducted with two types of detector responses (tallies) and the results were compared with measurements.
The objectives of the study were to add dry cask measurement data to the literature, to assess the performance of the external RMS in full-scale dry cask measurements, and to investigate the degree to which measurements could be estimated with high-fidelity radiation transport simulations. The study demonstrated that the external RMS can acquire neutron count rate measurements with a relative error of less than 0.5% in 5 min or less through the shielding of a dry cask lid. Additionally, the developed simulation model matched trends in the measurement data to a degree that exceeds results in current literature, and normalization factors were calculated to better estimate the magnitude of neutron count rates.