ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
V. Tiwari, T. F. Abbink, J. A. Ocádiz Flores, J. L. Flèche, C. Gueneau, S. Chatain, A. L. Smith, J. Martinet, C. Venard
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3035-3057
YMSR Paper | doi.org/10.1080/00295639.2023.2223745
Articles are hosted by Taylor and Francis Online.
A thorough understanding of the corrosion chemistry between molten salt fuel and structural materials (e.g., steel) is key for the advancement of Molten Salt Reactor technology. In this work, we consider more specifically the case of a chloride fuel salt mixture and the thermochemistry of a salt mixture such as (NaCl-MgCl2-PuCl3) in interaction with (Fe, Cr, Ni). The present work aims at the development of a thermodynamic model of the key subsystems NaCl-CrCl2, NaCl-CrCl3, and FeCl2-CrCl2 to predict corrosion products that may form between molten salt and structural materials. The Modified Quasichemical Model in the quadruplet approximation is used to describe the Gibbs energy of the liquid phase. A critical review of the existing phase diagram and thermodynamic data on theses systems is first presented. To alleviate the lack of data, ab initio calculations coupled with a quasi-harmonic approach are performed to estimate the thermodynamic properties for the intermediate solid compounds Na2CrCl4 and Na3CrCl6, which exist in the NaCl-CrCl2 and NaCl-CrCl3 systems, respectively. These atomistic simulation data together with selected experimental data are then used as input for the thermodynamic assessment of the three subsystems.