ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Nathan Greiner, François Madiot, Yannick Gorsse, Cyril Patricot, Guillaume Campioni
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 3000-3021
YMSR Paper | doi.org/10.1080/00295639.2023.2197043
Articles are hosted by Taylor and Francis Online.
Molten salt nuclear reactors (MSRs) constitute a promising technology to produce safe, reliable, abundant low-carbon energy. To design MSR systems and perform safety analyses on them, numerical simulation is a powerful tool. Here, we implemented a coupling between several solvers of the deterministic neutronics code APOLLO3® (the MINARET SN transport and the MINOS diffusion and SPn-simplified transport solvers) and the computational fluid dynamics (CFD) code TRUST/TrioCFD, both developed at the French Alternative Energies and Atomic Energy Commission (CEA). The code coupling is orchestrated using the dedicated C3PO library of the open-source SALOME platform. A new code-coupling strategy is employed whereby the delayed neutron precursor concentrations are computed by the CFD code, which eases the use of traditional deterministic neutronics codes. We verified the correctness of our implementation by performing a numerical benchmark dedicated to fast spectrum MSRs originally devised by the French National Center for Scientific Research. The numerical results we obtained are in excellent agreement with those obtained by recent MSR-dedicated multiphysics simulation tools. This study provides a new convenient neutronic–thermal-hydraulic coupling strategy for MSR core simulation.