ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Nicolo’ Abrate, Alex Aimetta, Sandra Dulla, Nicola Pedroni
Nuclear Science and Engineering | Volume 197 | Number 12 | December 2023 | Pages 2977-2999
YMSR Paper | doi.org/10.1080/00295639.2023.2190861
Articles are hosted by Taylor and Francis Online.
The development of new reactor technologies requires careful assessments of the various sources of epistemic uncertainties. In this work, nuclear data uncertainties featuring the main isotopes of the U/Th molten salt fast reactor (MSFR) design are propagated through Monte Carlo calculations to quantify the final uncertainty on some relevant integral parameters. In the first part of this paper, some best-estimate calculations are performed by selecting different nuclear data libraries, showing the remarkable impact of this choice on the final responses. Then the Generalized Perturbation Theory routine available in Serpent 2 is adopted for a preliminary sensitivity and uncertainty analyses with respect to keff, highlighting a significant discrepancy between the covariance of the JEFF-3.3 and ENDF/B-VIII.0 libraries. After the selection of a few relevant nuclides, namely, 7Li, 19F, 232Th, and 233U, the Total Monte Carlo method and the unscented transform (UT) are then adopted to estimate the uncertainty of other responses of interest like the conversion ratio and some multigroup constants. Some potential issues of the UT are highlighted, and a mitigation strategy is applied. A relevant result of this analysis concerns the need for better data evaluations for the nuclides constituting the circulating salt for an effective deployment of the MSFR technology.