ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Hajime Furuichi, Kenichi Katono, Yuki Mizushima, Toshiyuki Sanada
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2950-2960
Regular Research Article | doi.org/10.1080/00295639.2023.2180986
Articles are hosted by Taylor and Francis Online.
This study aims to improve the measurement accuracy of liquid film thickness using a liquid film sensor with an optical waveguide film (OWF). The measurement principle of employing the OWF is based on the detection of light reflection at the liquid film surface with high spatial resolution. Because the curved surface of the liquid film reflects light and increases measurement error, we propose a signal processing method to remove the error factor in the calculation of the time-averaged thickness. This method requires prediction of the surface curvature, and we numerically investigated the characteristics of the output signal related to the reflected light intensity. The analysis results showed that the effect of the curved surface up to the surface curvature of 5.0 mm−1 was negligible because the liquid film thickness showed good agreement with that of the flat liquid film surface within 7% accuracy. Furthermore, we consider the applicable range of liquid film thicknesses under the operating conditions of boiling water reactors (BWRs). We estimated the surface curvature of the liquid film based on the calculation of the critical Weber number and confirmed that the curvature caused under the BWR operating conditions was covered by the analysis conditions of this study. Therefore, our proposed method for signal processing via the OWF enabled us to improve the measurement accuracy of the time-averaged thickness with respect to the base film thickness by extracting accurate surface curvature data.