ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yutong Wen, Ding She, Lei Shi
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2920-2934
Regular Research Article | doi.org/10.1080/00295639.2023.2172312
Articles are hosted by Taylor and Francis Online.
There exists a neutron streaming effect in the high-temperature gas-cooled pebble-bed reactor (HTGR) pebble-bed core caused by the spatial heterogeneity of the neutron’s free path, which has a remarkable impact on neutron leakage. It is necessary to take into consideration the streaming effect in evaluating the homogenized diffusion coefficient of the pebble bed, prior to the whole-core diffusion calculation. In this paper, two methods are proposed for calculating the homogenized multigroup diffusion coefficient of the pebble bed based on migration area conservation theory and Benoist’s theory, respectively. Compared with existing methods, the newly proposed methods are adaptable to a general pebble bed consisting of multitype pebbles and nonvacuum atmosphere. Numerical results demonstrate the proposed methods’ effectiveness and consistency in evaluation of the pebble-bed homogenized diffusion coefficient.