ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yutong Wen, Ding She, Lei Shi
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2920-2934
Regular Research Article | doi.org/10.1080/00295639.2023.2172312
Articles are hosted by Taylor and Francis Online.
There exists a neutron streaming effect in the high-temperature gas-cooled pebble-bed reactor (HTGR) pebble-bed core caused by the spatial heterogeneity of the neutron’s free path, which has a remarkable impact on neutron leakage. It is necessary to take into consideration the streaming effect in evaluating the homogenized diffusion coefficient of the pebble bed, prior to the whole-core diffusion calculation. In this paper, two methods are proposed for calculating the homogenized multigroup diffusion coefficient of the pebble bed based on migration area conservation theory and Benoist’s theory, respectively. Compared with existing methods, the newly proposed methods are adaptable to a general pebble bed consisting of multitype pebbles and nonvacuum atmosphere. Numerical results demonstrate the proposed methods’ effectiveness and consistency in evaluation of the pebble-bed homogenized diffusion coefficient.