ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Cong Liu, Junxia Wei, Bin Zhang, Jinhong Li, Zhiqiang Sheng, Shuang Tan
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2853-2883
Regular Research Article | doi.org/10.1080/00295639.2023.2169537
Articles are hosted by Taylor and Francis Online.
Maintaining a reasonable balance between computational accuracy and overhead is important for neutron transport simulations of engineering problems. This paper presents a goal-oriented mesh adaptive algorithm applied to the multigroup discrete ordinates equation for fixed source and criticality problems. The dual-weighted residual (DWR) approach estimates numerical solution errors and drives local mesh refinement for specific targets, such as detector response, integral flux, and multiplication factor. We employ a reconstruction method to evaluate the spatial residuals of the fluxes obtained by the weighted difference scheme. To improve the performance of adaptive algorithms, new estimation models are proposed for adjoint fluxes needed by the DWR theory, including a regional goal model for fixed source problems and an inconsistent fission source model for k-eigenvalue problems. Additionally, we analyze the impact of the truncation of flux reconstruction and isotropic approximation of adjoint fluxes on grid error indicators and adaptive calculations. Numerical results demonstrate that for the quantities of interest, our adaptive approach saves more than 70% of computational effort and run time when obtaining a level of high accuracy comparable to that of uniform fine grids.