ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Claudia Picoco, Valentin Rychkov
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2778-2786
PSA 2021 Paper | doi.org/10.1080/00295639.2023.2196227
Articles are hosted by Taylor and Francis Online.
A probabilistic safety assessment (PSA) is used to estimate potential risks associated with a nuclear power plant. Event trees (ETs) and fault trees (FTs) describe accident scenarios following initiating events. They allow for identifying and quantifying the consequence frequencies. Based on success criteria, support studies are used to determine each scenario’s consequence. They are also used to define the time available for the operators to carry out the actions involved in the scenario, and consequently, the corresponding human failure probability.
In this paper, we use a dynamic PSA toolbox to optimize support studies for a classical (ET/FT) PSA model. We analyze medium-break loss-of-coolant accident (LOCA) initiating events with the possible failure of the high-pressure safety injection (HPSI) system for an internal event Level 1 PSA for a pressurized water reactor plant. In order to prevent core uncovery and subsequent core damage, operators must depressurize the primary circuit to reach the low-pressure safety injection set point. This scenario represents a significant contribution to the core damage frequency. The dominant cut sets corresponding to this scenario involve HPSI failure to run over 24 h, while the thermal-hydraulic analysis supporting the human reliability assessment (HRA) analysis for this sequence assumes the unavailability of HPSI pumps at the beginning of the accident.
We update the thermal-hydraulic assumptions in the support study by performing simulations for different values of the HPSI failure time. We find that even a short HPSI operation time buys significant (from the HRA point of view) available time for operators and drives significant improvement in estimating the human error probability (HEP). We postprocessed the minimal cut-set probability by integrating the obtained HEP. This result allows for more realistic quantification of the contribution of the medium-break LOCA in the core damage frequency.