ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Ali Mansoor, Xiaoxu Diao, Carol Smidts
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2751-2777
PSA 2021 Paper | doi.org/10.1080/00295639.2023.2196937
Articles are hosted by Taylor and Francis Online.
The increased complexity of modern system designs and demands for quicker time to market have made safety-related verification and validation of such systems more challenging. Incorporating safety and risk considerations at the early stages of design is one way to acquire a more robust initial design for novel systems. Inductive fault analysis has its significance at final stages of design, e.g., verification and validation. However, to preclude certain system failure states—especially for the systems with high failure consequences, a designer would innately prefer to trace back and remedy the causes of failure, as compared to a more cumbersome activity of identifying the faults individually and sifting the combinations that lead to the failure of interest. The work presented in this paper is aimed at the development of a backward failure propagation methodology for analyzing the origins of functional failures in a conceptual design of systems including but not limited to nuclear, mechanical, aerospace, process, electrical/electronics, telecommunication, automotive, etc. This method allows the designer to achieve a robust early design based on the analyses of the system’s functional dependencies before proceeding to the detailed design and testing stages. The insights provided by the analysis at the conceptual design stage also reduce redesign efforts, testing costs, and project delays. The proposed method is a functional analysis approach that extends the Integrated System Failure Analysis for backward failure propagation. When provided with an abstract system configuration, a system’s functional model, and a system’s behavioral model, it utilizes a known functional state (typically a failure) to acquire system component modes and the states of other functions. The method includes inversion of the functional failure logic and component behavioral rules using propositional logic and deductive analysis to assess valid states of a system that satisfy the given initial conditions. To test the method’s scalability, we applied the proposed method to a simplified representation of the secondary loop of a typical pressurized water reactor.