ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
John Stamatakos, Biswajit Dasgupta, Osvaldo Pensado, Nilesh Chokshi, Robert Budnitz, M. K. Ravindra
Nuclear Science and Engineering | Volume 197 | Number 11 | November 2023 | Pages 2743-2750
PSA 2021 Paper | doi.org/10.1080/00295639.2022.2158701
Articles are hosted by Taylor and Francis Online.
The commercial nuclear power plant industry initiated the licensing modernization project (LMP) to enhance the risk-informed and performance-based (RIPB) regulatory basis for advanced nuclear power reactors. The LMP framework relies heavily on RIPB concepts and approaches that together integrate the defense-in-depth philosophy. One example approach for seismic design is to align the LMP concepts with the performance targets described in the American Society of Civil Engineers (ASCE) standard, ASCE 43-19. The underlying strategy of this approach is to consider the performance of individual structures, systems, and components (SSCs) in seismic design, as well as the role they play in an accident event sequence. This approach contrasts with current regulations, in which every individual safety-related SSC is designed to the same seismic criteria irrespective of the role the SSC plays in the overall system performance. This new philosophy envisions more flexible seismic design options for each SSC, such that the overall seismic design can meet system-level acceptability criteria as well as plant-level acceptability criteria. The objective of this paper is to illustrate the flexibility and benefits of this proposed approach to the seismic design of SSCs in terms of reduced SSC demands (by reducing the design ground motions for SSCs) and improved SSC capacities (by allowing for alternative damage state limits). A simple shear wall was designed using ASCE 43-19 for a hard rock site in the Central Eastern United States considering alternate seismic design category and limit state combinations to examine the physical designs and functional fragilities of these combinations and their impact on seismic performance. The flexibility of this proposed approach is illustrated by an example that shows reduced SSC demands, while the SSC capacities and margins remain consistent with the required safety performance without any loss in overall plant safety.