ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Fred Gelbard, Bradley A. Beeny, Larry L. Humphries, Kenneth C. Wagner, Lucas I. Albright, Max Poschmann, Markus H. A. Piro
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2723-2741
Research Article | doi.org/10.1080/00295639.2022.2161277
Articles are hosted by Taylor and Francis Online.
Molten Salt Reactor (MSR) systems can be divided into two basic categories: liquid-fueled MSRs in which the fuel is dissolved in the salt, and solid-fueled systems such as the Fluoride-salt-cooled High-temperature Reactor (FHR). The molten salt provides an impediment to fission product release as actinides and many fission products are soluble in molten salt. Nonetheless, under accident conditions, some radionuclides may escape the salt by vaporization and aerosol formation, which may lead to release into the environment. We present recent enhancements to MELCOR to represent the transport of radionuclides in the salt and releases from the salt. Some soluble but volatile radionuclides may vaporize and subsequently condense to aerosol. Insoluble fission products can deposit on structures. Thermochimica, an open-source Gibbs Energy Minimization (GEM) code, has been integrated into MELCOR. With the appropriate thermochemical database, Thermochimica provides the solubility and vapor pressure of species as a function of temperature, pressure, and composition, which are needed to characterize the vaporization rate and the state of the salt with fission products. Since thermochemical databases are still under active development for molten salt systems, thermodynamic data for fission product solubility and vapor pressure may be user specified. This enables preliminary assessments of fission product transport in molten salt systems. In this paper, we discuss modeling of soluble and insoluble fission product releases in a MSR with Thermochimica incorporated into MELCOR. Separate-effects experiments performed as part of the Molten Salt Reactor Experiment in which radioactive aerosol was released are discussed as needed for determining the source term.