ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yong-Seok Choi, Dong-Hoon Kam, Byong-Guk Jeon, Jong-Kuk Park, Sang-Ki Moon
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2711-2722
Research Article | doi.org/10.1080/00295639.2022.2132100
Articles are hosted by Taylor and Francis Online.
Insufficient thermal-hydraulic knowledge for analysis of a reactivity-initiated accident demands experiments of fast-transient flow boiling heat transfer from moderate- to high-pressure conditions. In this study, those experiments are conducted for vertical upward tube flows of pressurized water. The tube wall is joule heated by stepwise electric pulse power to achieve an abrupt wall heating condition. The applied pulse power is varied from 4.68 to 13.59 GW/m3, which is beyond the power required for steady-state critical heat flux (CHF) to occur. Rapid evolution of the boiling wall temperature is extracted from outer wall temperature data by solving an inverse heat conduction problem. As a result, with increasing the applied pulse power, the time to occurrence of departure from nucleate boiling gets shorter, and the corresponding peak heat flux increases over the steady-state CHF, which is evaluated at the same flow condition. A logarithmic relation between the wall heating rate and the CHF increment ratio is also demonstrated. The effects of pressure, inlet subcooling, and mass flux on the transient peak heat flux are also investigated. As the pressure increases, the nucleate boiling duration gets shorter with decreasing peak heat flux. On the other hand, as the inlet subcooling increases, the nucleate boiling duration gets longer, and the peak heat flux increases. Contrarily, the mass flux does not show any noticeable effects on the transient heat transfer evolution.