ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40: The wait is over
Following the enthusiastic response from the nuclear community in 2024 for the inaugural NN 40 Under 40, the Nuclear News team knew we had to take up the difficult task in 2025 of turning it into an annual event—though there was plenty of uncertainty as to how the community would receive a second iteration this year. That uncertainty was unfounded, clearly, as the tight-knit nuclear community embraced the chance to celebrate its up-and-coming generation of scientists, engineers, and policy makers who are working to grow the influence of this oft-misunderstood technology.
E. Schmidt, N. Reinke, M. Freitag, M. Sonnenkalb
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2673-2685
Research Article | doi.org/10.1080/00295639.2022.2146994
Articles are hosted by Taylor and Francis Online.
During a loss-of-coolant accident in a pressurized water reactor (PWR), steam of varying quality is released from the primary circuit into the equipment compartments of the containment, followed by the release of a hydrogen-steam mixture during the core degradation phase. In the case of long-lasting accidents, findings of detailed code analyses indicate an enrichment of hydrogen in lower peripheral containment compartments in the reference PWR plant under investigation. During the late accident phase with ex-vessel molten core–concrete interaction, even in the case of an operating passive autocatalytic recombiner system, this poses a threat for local hydrogen combustion later on. Such hydrogen phenomena are not expected and have not been widely studied up to now. Therefore, corresponding experiments have been performed at the THAI test facility operated by Becker Technologies.
One of these tests had been precalculated with the COntainment COde SYStem (COCOSYS) as part of the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) code system AC2 and has been used to validate the code. The 60-m3 THAI test vessel has been divided into an inner compartment that has been connected to the surrounding vessel, simulating the upper and peripheral containment part, by very small flow openings at the bottom representing the clearance between door frames and door leaves and one opening at the top representing typical openings by burst disks.
The paper discusses both the experimental findings of a test series on the potential enrichment of hydrogen in lower containment compartments and the COCOSYS calculations demonstrating the applicability of the code under complex flow conditions including stratification phenomena.