ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Thanh Hua, Ling Zou, Rui Hu
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2660-2672
Research Article | doi.org/10.1080/00295639.2023.2186163
Articles are hosted by Taylor and Francis Online.
The High Temperature Test Facility (HTTF) at Oregon State University is an integral system test facility to simulate postulated reactor transients of prismatic high-temperature gas-cooled reactors(HTGRs). A series of test campaigns was launched, providing abundant test data that could be used to benchmark reactor system analysis codes like the System Analysis Module (SAM). In this study, a SAM model of the facility is developed based on the two-dimensional (2D) ring model approach. All components including the ceramic matrix, graphite heaters, helium coolant channels, core barrel, upcomer, pressure vessel, and reactor cavity cooling system are modeled as concentric cylindrical rings. The model is used to simulate one of the benchmark problems—Pressurized Conduction Cooldown (PCC)—within the scope of the Organisation for Economic Co-operation and Development Nuclear Energy Agency International HTTF Benchmark. The simulations consist of two parts. In the first part, operating and boundary conditions as well as thermophysical properties of materials are specified for the benchmark problem. Results from the first part will be used in code-to-code comparison. In the second part, the SAM model is used to simulate Test PG-27, which is the first PCC test carried out in the HTTF, with only two of the ten heater banks activated. The results in the second part are used for code-to-data comparison. Because the helium coolant flow rate is not measured in this facility, it is estimated using the input power and inlet/outlet coolant temperatures. Additionally, radial heat flow in the ceramic blocks is complicated by hundreds of cylindrical coolant channels and heater rods embedded in them. As such, it is necessary to deduce an effective thermal conductivity for the ceramic to analyze the core thermal behavior. SAM predictions of the helium coolant and ceramic temperatures are compared with test data measured in three equivalent sectors. Overall, the SAM results agree reasonably well with test data within the variation of data among the three sectors, which demonstrates SAM’s capability in capturing transient effects in HTGR using the simplified 2D ring model.