ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Tri Nguyen, Elia Merzari
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2634-2659
Research Article | doi.org/10.1080/00295639.2023.2186200
Articles are hosted by Taylor and Francis Online.
The design of advanced nuclear reactors [Generation IV (Gen IV)] involves an array of challenging fluid-flow issues that affect its safety and performance. Given that Gen IV designs have improved passive safety features, the downcomer plays a crucial role in loss-of-power scenarios. Fluid-flow behavior in the downcomer can involve forced to mixed to natural convection, and characterizing the heat transfer for these changing regimes is a daunting challenge. The creation of a high-resolution heat transfer numerical database can potentially support the development of precise and affordable reduced-resolution heat transfer models. These models can be designed based on a multiscale hierarchy developed as part of the recently U.S. Department of Energy–funded Center of Excellence for Thermal Fluids Applications in Nuclear Energy, which can help address industrial-driven issues associated with the heat transfer behavior of advanced reactors. In this paper, the downcomer is simplified to heated parallel plates, and high Prandtl number fluid (FLiBe) is considered for all simulations. The calculations are performed for a wide range of Richardson numbers from 0 to 400 at two different FLiBe Prandtl numbers (12 and 24), which result in 40 simulated cases in total. Time-averaged and time series statistics, as well as Nusselt number correlations, are investigated to illuminate mixed convection behavior. The calculated database will be instrumental in understanding flow behavior in the downcomer. Ultimately, we aim to evaluate existing heat transfer correlations, and some modifications are proposed.