ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Hongmei Lyu, Fabian Schlegel, Roland Rzehak, Dirk Lucas
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2602-2619
Research Article | doi.org/10.1080/00295639.2022.2131344
Articles are hosted by Taylor and Francis Online.
The Euler-Euler model is widely used in bubbly flow simulations up to industrial dimensions. The standard Euler-Euler model is based on the phase-averaging method. After averaging, the bubble forces in the field equations are functions of the local void fraction. In simulations, when the bubble diameter is larger than the computational cell spacing, the forces can transport the gas belonging to the same bubble in different directions. By contrast, a closure model for the bubble force is typically developed based on the assumption that the force is a resultant force that acts on the bubble’s center of mass. This inconsistency can lead to a nonphysical gas concentration in the center of a channel or near the channel wall if the bubble diameter is larger than the cell spacing. The purpose of the present contribution is to develop an Euler-Euler model where the bubble force consistency is recovered for two-phase flow simulations where the diameter of the disperse phase can be larger than the cell spacing. Such an Euler-Euler model is developed by combining an existing particle-center-averaged Euler-Euler framework with a Gaussian convolution method. To validate this Euler-Euler approach, a comparison is made with experimental data for the bubbly flows in two different vertical pipes. The results show that the proposed Euler-Euler model recovers the bubble force consistency and alleviates the overprediction of the void fraction peak near the wall, while its simulation results in the axial gas and liquid velocity and the liquid turbulence kinetic energy are similar to the results of the standard Euler-Euler model.