ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hongmei Lyu, Fabian Schlegel, Roland Rzehak, Dirk Lucas
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2602-2619
Research Article | doi.org/10.1080/00295639.2022.2131344
Articles are hosted by Taylor and Francis Online.
The Euler-Euler model is widely used in bubbly flow simulations up to industrial dimensions. The standard Euler-Euler model is based on the phase-averaging method. After averaging, the bubble forces in the field equations are functions of the local void fraction. In simulations, when the bubble diameter is larger than the computational cell spacing, the forces can transport the gas belonging to the same bubble in different directions. By contrast, a closure model for the bubble force is typically developed based on the assumption that the force is a resultant force that acts on the bubble’s center of mass. This inconsistency can lead to a nonphysical gas concentration in the center of a channel or near the channel wall if the bubble diameter is larger than the cell spacing. The purpose of the present contribution is to develop an Euler-Euler model where the bubble force consistency is recovered for two-phase flow simulations where the diameter of the disperse phase can be larger than the cell spacing. Such an Euler-Euler model is developed by combining an existing particle-center-averaged Euler-Euler framework with a Gaussian convolution method. To validate this Euler-Euler approach, a comparison is made with experimental data for the bubbly flows in two different vertical pipes. The results show that the proposed Euler-Euler model recovers the bubble force consistency and alleviates the overprediction of the void fraction peak near the wall, while its simulation results in the axial gas and liquid velocity and the liquid turbulence kinetic energy are similar to the results of the standard Euler-Euler model.