ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
E. M. A. Frederix, S. Tajfirooz, J. A. Hopman, J. Fang, E. Merzari, E. M. J. Komen
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2585-2601
Research Article | doi.org/10.1080/00295639.2022.2141517
Articles are hosted by Taylor and Francis Online.
Simulation of two-phase flows is relevant for reactor design and safety at normal operation or during accident scenarios. Often, the two-phase flow is in a regime in which slugs are formed or where the flow stratifies. Modeling such situations using standard single-phase Reynolds-averaged Navier-Stokes (RANS) turbulence models fails due to an overestimation of the eddy viscosity at the resolved two-phase interface. To solve this, an ad hoc turbulence damping term has been proposed in the literature that reduces the turbulence production locally at a two-phase interface, analogously to turbulence wall functions. However, this approach must be tailored to the specific setting and does not consider physical contributions such as surface tension or flow topology. Therefore, the problem of two-phase interfacial turbulence must be studied more in-depth. In this work, we consider co-current turbulent Taylor bubble flow using high-fidelity numerical simulation. The Basilisk code is used to simulate a Taylor bubble rising in a vertical pipe. By simulating the bubble in a moving frame of reference, we may study the turbulent kinetic energy (TKE) budgets ahead of the bubble, in its wake, and across the interface. The implementation of the TKE budget computation and the underlying averaging techniques are validated for the single-phase region ahead of the Taylor bubble using reference direct numerical simulation data. The analysis of the TKE budgets in the setting of Taylor bubble flow allows for the study of how turbulence behaves due to the presence of a two-phase interface and, in turn, supports the improvement of two-phase RANS models.