ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
E. M. A. Frederix, S. Tajfirooz, J. A. Hopman, J. Fang, E. Merzari, E. M. J. Komen
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2585-2601
Research Article | doi.org/10.1080/00295639.2022.2141517
Articles are hosted by Taylor and Francis Online.
Simulation of two-phase flows is relevant for reactor design and safety at normal operation or during accident scenarios. Often, the two-phase flow is in a regime in which slugs are formed or where the flow stratifies. Modeling such situations using standard single-phase Reynolds-averaged Navier-Stokes (RANS) turbulence models fails due to an overestimation of the eddy viscosity at the resolved two-phase interface. To solve this, an ad hoc turbulence damping term has been proposed in the literature that reduces the turbulence production locally at a two-phase interface, analogously to turbulence wall functions. However, this approach must be tailored to the specific setting and does not consider physical contributions such as surface tension or flow topology. Therefore, the problem of two-phase interfacial turbulence must be studied more in-depth. In this work, we consider co-current turbulent Taylor bubble flow using high-fidelity numerical simulation. The Basilisk code is used to simulate a Taylor bubble rising in a vertical pipe. By simulating the bubble in a moving frame of reference, we may study the turbulent kinetic energy (TKE) budgets ahead of the bubble, in its wake, and across the interface. The implementation of the TKE budget computation and the underlying averaging techniques are validated for the single-phase region ahead of the Taylor bubble using reference direct numerical simulation data. The analysis of the TKE budgets in the setting of Taylor bubble flow allows for the study of how turbulence behaves due to the presence of a two-phase interface and, in turn, supports the improvement of two-phase RANS models.