ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. J. Novak, P. Shriwise, P. K. Romano, R. Rahaman, E. Merzari, D. Gaston
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2561-2584
Research Article | doi.org/10.1080/00295639.2022.2158715
Articles are hosted by Taylor and Francis Online.
Cardinal is an open-source application that couples OpenMC Monte Carlo transport and NekRS computational fluid dynamics (CFD) to the Multiphysics Object-Oriented Simulation Environment (MOOSE), closing neutronics and thermal-fluid gaps in conducting high-resolution multiscale and multiphysics analyses of nuclear systems. We first provide a brief introduction to Cardinal’s software design, data mapping, and coupling strategy to highlight our approach to overcoming common challenges in high-fidelity multiphysics simulations. We then present two Cardinal simulations for hexagonal pin bundles. The first is a validation of Cardinal’s conjugate heat transfer coupling of NekRS’s Reynolds-Averaged Navier Stokes model with MOOSE’s heat conduction physics for a bare seven-pin Freon-12 bundle flow experiment. Predictions for pin surface temperatures under three different heating modes agree reasonably well with experimental data and similar CFD modeling from the literature. The second simulation is a multiphysics coupling of OpenMC, NekRS, and BISON for a reduced-scale, seven-pin wire-wrapped version of an Advanced Burner Reactor bundle. Wire wraps are approximated using a momentum source model, and coupled predictions are provided for velocity, temperature, and power distribution.