ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. J. Novak, P. Shriwise, P. K. Romano, R. Rahaman, E. Merzari, D. Gaston
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2561-2584
Research Article | doi.org/10.1080/00295639.2022.2158715
Articles are hosted by Taylor and Francis Online.
Cardinal is an open-source application that couples OpenMC Monte Carlo transport and NekRS computational fluid dynamics (CFD) to the Multiphysics Object-Oriented Simulation Environment (MOOSE), closing neutronics and thermal-fluid gaps in conducting high-resolution multiscale and multiphysics analyses of nuclear systems. We first provide a brief introduction to Cardinal’s software design, data mapping, and coupling strategy to highlight our approach to overcoming common challenges in high-fidelity multiphysics simulations. We then present two Cardinal simulations for hexagonal pin bundles. The first is a validation of Cardinal’s conjugate heat transfer coupling of NekRS’s Reynolds-Averaged Navier Stokes model with MOOSE’s heat conduction physics for a bare seven-pin Freon-12 bundle flow experiment. Predictions for pin surface temperatures under three different heating modes agree reasonably well with experimental data and similar CFD modeling from the literature. The second simulation is a multiphysics coupling of OpenMC, NekRS, and BISON for a reduced-scale, seven-pin wire-wrapped version of an Advanced Burner Reactor bundle. Wire wraps are approximated using a momentum source model, and coupled predictions are provided for velocity, temperature, and power distribution.