ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. J. Uitslag-Doolaard, K. Zwijsen, F. Roelofs, M. M. Stempniewicz
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2543-2560
Research Article | doi.org/10.1080/00295639.2022.2148809
Articles are hosted by Taylor and Francis Online.
Increasing the computational power enables the nuclear community to combine existing knowledge on the variety of different physical phenomena that take place in reactors and to develop tools that can simulate these combined, interacting phenomena simultaneously. This includes phenomena related to structural mechanics, fluid dynamics, and reactor physics among others. Coupling different codes developed specifically for the analysis of separate phenomenon is currently a topic high on the research and development agenda of the international community.
Based on the experience of successfully computing the dissymmetric benchmark in the Phénix reactor by coupling the system thermal-hydraulic (STH) code SPECTRA to the computational fluid dynamics (CFD) code CFX in the H2020 SESAME project, the Nuclear Research and Consultancy Group (NRG) is currently developing the code-coupling tool myMUSCLE: MultiphYsics MUltiscale Simulation CoupLing Environment. MyMUSCLE is an independent, external, Fortran-based code that arranges the efficient and robust coupling of different codes. It aims at being flexible with respect to the codes being coupled, i.e., commercial and open-source codes, while having a single coupling tool that enhances quality assurance. It is currently set up to couple SPECTRA as a STH code to CFX, Fluent, STAR-CCM+, or OpenFOAM as a CFD code. This paper presents the proof of principle and first verification of the myMUSCLE tool under development by applying it to multiscale thermal-hydraulic applications.
First, a flow through a pipe is modeled as proof of principle for explicit coupling at a single coupling interface. Second, in preparation for modeling liquid-metal-cooled fast reactors, a piping system with a pool with natural convection is modeled. The results of the multiscale calculations show good agreement among the different coupled CFD codes. Finally, the preparations for simulating the TALL-3D experiment, used for generating data for validation of simulation tools for liquid-metal pools, are presented.