ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. J. Uitslag-Doolaard, K. Zwijsen, F. Roelofs, M. M. Stempniewicz
Nuclear Science and Engineering | Volume 197 | Number 10 | October 2023 | Pages 2543-2560
Research Article | doi.org/10.1080/00295639.2022.2148809
Articles are hosted by Taylor and Francis Online.
Increasing the computational power enables the nuclear community to combine existing knowledge on the variety of different physical phenomena that take place in reactors and to develop tools that can simulate these combined, interacting phenomena simultaneously. This includes phenomena related to structural mechanics, fluid dynamics, and reactor physics among others. Coupling different codes developed specifically for the analysis of separate phenomenon is currently a topic high on the research and development agenda of the international community.
Based on the experience of successfully computing the dissymmetric benchmark in the Phénix reactor by coupling the system thermal-hydraulic (STH) code SPECTRA to the computational fluid dynamics (CFD) code CFX in the H2020 SESAME project, the Nuclear Research and Consultancy Group (NRG) is currently developing the code-coupling tool myMUSCLE: MultiphYsics MUltiscale Simulation CoupLing Environment. MyMUSCLE is an independent, external, Fortran-based code that arranges the efficient and robust coupling of different codes. It aims at being flexible with respect to the codes being coupled, i.e., commercial and open-source codes, while having a single coupling tool that enhances quality assurance. It is currently set up to couple SPECTRA as a STH code to CFX, Fluent, STAR-CCM+, or OpenFOAM as a CFD code. This paper presents the proof of principle and first verification of the myMUSCLE tool under development by applying it to multiscale thermal-hydraulic applications.
First, a flow through a pipe is modeled as proof of principle for explicit coupling at a single coupling interface. Second, in preparation for modeling liquid-metal-cooled fast reactors, a piping system with a pool with natural convection is modeled. The results of the multiscale calculations show good agreement among the different coupled CFD codes. Finally, the preparations for simulating the TALL-3D experiment, used for generating data for validation of simulation tools for liquid-metal pools, are presented.