ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2498-2508
Research Article | doi.org/10.1080/00295639.2023.2196936
Articles are hosted by Taylor and Francis Online.
The COarse MEsh Transport (COMET) method, a hybrid continuous energy stochastic and deterministic transport method/tool based on the incident flux response expansion theory, is capable of providing highly accurate and efficient continuous energy whole-core neutron solutions to various heterogeneous reactor cores. In this work, a novel low-order (zeroth-order) acceleration technique is developed to significantly improve COMET’s computational efficiency for core calculations. This new method is based on consistent coupled low-order and high-order calculations to obtain the COMET core solution. In the low-order calculations, COMET is used to converge the total partial current escaping from each coarse mesh and the core eigenvalue. The resulting fixed-source problem in which the off-diagonal terms (equivalent to the scattering and fission neutron sources) are constructed by the zeroth-order solution are efficiently solved by the high-order COMET calculations. The resulting high-order angular flux on each coarse mesh bounding surface is then used to update (collapse) the low-order response coefficients. The coupled low-order and high-order calculations are repeated until both the eigenvalue and the low-order response coefficients are converged. The new acceleration method is implemented into COMET and tested in a set of stylized Advanced High Temperature Reactor (AHTR) benchmark problems. It is found that the core eigenvalues and the local fission density distributions predicted by COMET with the low-order acceleration agree very well with those computed by the original COMET. The eigenvalue discrepancy varies from 0 to 1 pcm, and the average relative differences in the stripewise and assembly-average fission density distributions are in the range of 0.021% to 0.032% and 0.004% to 0.01%, respectively. The comparisons have shown that the new low-order acceleration method can maintain COMET’s accuracy while improving its computational efficiency for core calculations by 12 to 16 times.