ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Laura Laghi, Enrico Schiassi, Mario De Florio, Roberto Furfaro, Domiziano Mostacci
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2373-2403
Research Article | doi.org/10.1080/00295639.2022.2160604
Articles are hosted by Taylor and Francis Online.
This work aims to solve six problems with four different physics-informed machine learning frameworks and compare the results in terms of accuracy and computational cost. First, we considered the diffusion-advection-reaction equations, which are second-order linear differential equations with two boundary conditions. The first algorithm is the classic Physics-Informed Neural Networks. The second one is Physics-Informed Extreme Learning Machine. The third framework is Deep Theory of Functional Connections, a multilayer neural network based on the solution approximation via a constrained expression that always analytically satisfies the boundary conditions. The last algorithm is the Extreme Theory of Functional Connections (X-TFC), which combines Theory of Functional Connections and shallow neural network with random features [e.g., Extreme Learning Machine (ELM)]. The results show that for these kinds of problems, ELM-based frameworks, especially X-TFC, overcome those using deep neural networks both in terms of accuracy and computational time.