ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Philippe Humbert
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2356-2372
Research Article | doi.org/10.1080/00295639.2022.2162304
Articles are hosted by Taylor and Francis Online.
Methods used to infer nuclear parameters from neutron count statistics fall into two categories depending on whether they use moments or count number probabilities. As probabilities are in general more difficult to calculate, we are interested here in the reconstruction of distributions from their lower-order moments. For this, we explore two approaches. The first one relies on a generalization of the two-forked branching correlation (quadratic) approximation used in the PMZBB and Poisson radical distributions, and the second one is founded on the expansion of the distribution on a Meixner discrete orthogonal polynomial base.