ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
Mahsa Farasat, Federico Zagni, Lorenzo Pompignoli, G. A. Pablo Cirrone, Ulrich W. Scherer, Lidia Strigari, Domiziano Mostacci
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2317-2326
Research Article | doi.org/10.1080/00295639.2022.2164148
Articles are hosted by Taylor and Francis Online.
Argon-41 is an essential gaseous radionuclide that must be monitored in gaseous effluents from nuclear facilities. Therefore, a precise evaluation of 41Ar activity is highly desired. Gamma spectroscopy with a NaI(Tl) scintillation detector coupled with a multichannel analyzer (MCA) is one of the widely used techniques for the identification and activity measurements of radioisotopes. However, the efficiency calibration of these kinds of monitoring systems highly depends on the source-detector geometry, and a large amount of uncertainty may complicate the calibration. This paper presents the evaluation of the full peak efficiency of a 2 × 2-in. NaI(Tl) scintillation detector coupled with a stable MCA for a 41Ar source with 1293.5 keV energy in two different source-detector geometries, duct and Marinelli beaker, using the FLUKA code. A new experimental technique is considered to produce 41Ar in a controlled geometry, like a Marinelli beaker, through neutron irradiation of natural argon inside a cyclotron bunker. The simulation data were compared with the experimental results for Marinelli beaker geometry, and the ratio was evaluated as 0.99 ± 0.07. The ratio was considered a scaling factor for the final efficiency calibration of duct geometry.