ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
F. Quinteros, P. Rubiolo, V. Ghetta, J. Giraud, N. Capellan
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2176-2191
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2167470
Articles are hosted by Taylor and Francis Online.
The French National Center for Scientific Research (CNRS) is carrying out design studies on a nuclear electric propulsion (NEP) engine based on a molten salt reactor (MSR). A NEP engine based on liquid nuclear fuel could allow developing a core design with relatively high power densities and temperatures while using simple reactivity control systems and keeping low pressure and temperature gradients in the fuel. Nevertheless, the design work of such an engine poses significant technical challenges and requires the use of advanced numerical simulation tools. Different MSRs for space are currently being studied. In this work, a MSR concept using a fast neutron spectrum is investigated using a multiphysics tool based on a numerical coupling between the OpenFOAM (computational fluid dynamics) and SERPENT 2 (Monte Carlo neutronics) codes. The analysis of this paper is focused on the reactor core coupled neutronic and thermal-hydraulic phenomena. Steady state full-power conditions are calculated for two different fast MSR designs using low-enriched uranium (LEU) and highly enriched uranium. The results show that the proposed core layout and materials allow obtaining a satisfactory temperature distribution in the core (maximal values and gradients) without significant penalization of the reactor operating conditions. A reactivity control strategy excluding the use of control rods is studied for the LEU concept. Transient and safety studies are also performed and show acceptable performance.