ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
F. Quinteros, P. Rubiolo, V. Ghetta, J. Giraud, N. Capellan
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2176-2191
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2167470
Articles are hosted by Taylor and Francis Online.
The French National Center for Scientific Research (CNRS) is carrying out design studies on a nuclear electric propulsion (NEP) engine based on a molten salt reactor (MSR). A NEP engine based on liquid nuclear fuel could allow developing a core design with relatively high power densities and temperatures while using simple reactivity control systems and keeping low pressure and temperature gradients in the fuel. Nevertheless, the design work of such an engine poses significant technical challenges and requires the use of advanced numerical simulation tools. Different MSRs for space are currently being studied. In this work, a MSR concept using a fast neutron spectrum is investigated using a multiphysics tool based on a numerical coupling between the OpenFOAM (computational fluid dynamics) and SERPENT 2 (Monte Carlo neutronics) codes. The analysis of this paper is focused on the reactor core coupled neutronic and thermal-hydraulic phenomena. Steady state full-power conditions are calculated for two different fast MSR designs using low-enriched uranium (LEU) and highly enriched uranium. The results show that the proposed core layout and materials allow obtaining a satisfactory temperature distribution in the core (maximal values and gradients) without significant penalization of the reactor operating conditions. A reactivity control strategy excluding the use of control rods is studied for the LEU concept. Transient and safety studies are also performed and show acceptable performance.