ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Vedant K. Mehta, Zachary A. Miller, Dasari V. Rao
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2161-2175
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2164150
Articles are hosted by Taylor and Francis Online.
Metal hydrides are being seriously considered for advanced nuclear reactor or microreactor applications due to their solid physical state and high hydrogen density. Using hydrides for autonomous applications poses several research and development challenges, one of which relates to neutron upscattering in the thermal energy regime. These hydrides, including zirconium hydride and yttrium hydride, result in a positive temperature coefficient of reactivity for several advanced reactor designs. In this study, we consider one such design that exhibits positive feedback from metal hydrides and thoroughly investigate the neutronic aspects of the core. Temperature reactivity coefficients for four fuels and two hydride moderator configurations are studied, and the total temperature coefficients are found to be positive for all designs, showing that this issue cannot be resolved simply by material variations. Accordingly, five epi-thermal absorbers were evaluated to demonstrate the feasibility of the excess positive feedback suppression in the core instigating from neutron energy spectrum shift. Following which, two promising burnable poison candidates are selected to investigate further throughout the core discharge. Promising results are shown for this core design, which can be extended to other hydride-moderated remote special-purpose reactor designs.