ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Vedant K. Mehta, Zachary A. Miller, Dasari V. Rao
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2161-2175
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2164150
Articles are hosted by Taylor and Francis Online.
Metal hydrides are being seriously considered for advanced nuclear reactor or microreactor applications due to their solid physical state and high hydrogen density. Using hydrides for autonomous applications poses several research and development challenges, one of which relates to neutron upscattering in the thermal energy regime. These hydrides, including zirconium hydride and yttrium hydride, result in a positive temperature coefficient of reactivity for several advanced reactor designs. In this study, we consider one such design that exhibits positive feedback from metal hydrides and thoroughly investigate the neutronic aspects of the core. Temperature reactivity coefficients for four fuels and two hydride moderator configurations are studied, and the total temperature coefficients are found to be positive for all designs, showing that this issue cannot be resolved simply by material variations. Accordingly, five epi-thermal absorbers were evaluated to demonstrate the feasibility of the excess positive feedback suppression in the core instigating from neutron energy spectrum shift. Following which, two promising burnable poison candidates are selected to investigate further throughout the core discharge. Promising results are shown for this core design, which can be extended to other hydride-moderated remote special-purpose reactor designs.