ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Vedant K. Mehta, Zachary A. Miller, Dasari V. Rao
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2161-2175
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2164150
Articles are hosted by Taylor and Francis Online.
Metal hydrides are being seriously considered for advanced nuclear reactor or microreactor applications due to their solid physical state and high hydrogen density. Using hydrides for autonomous applications poses several research and development challenges, one of which relates to neutron upscattering in the thermal energy regime. These hydrides, including zirconium hydride and yttrium hydride, result in a positive temperature coefficient of reactivity for several advanced reactor designs. In this study, we consider one such design that exhibits positive feedback from metal hydrides and thoroughly investigate the neutronic aspects of the core. Temperature reactivity coefficients for four fuels and two hydride moderator configurations are studied, and the total temperature coefficients are found to be positive for all designs, showing that this issue cannot be resolved simply by material variations. Accordingly, five epi-thermal absorbers were evaluated to demonstrate the feasibility of the excess positive feedback suppression in the core instigating from neutron energy spectrum shift. Following which, two promising burnable poison candidates are selected to investigate further throughout the core discharge. Promising results are shown for this core design, which can be extended to other hydride-moderated remote special-purpose reactor designs.