ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Thomas G. Saller, Vishnu Nair, Andrew Till, Nathan Gibson
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2117-2135
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2133940
Articles are hosted by Taylor and Francis Online.
It is challenging to select an appropriate group structure for any given multigroup neutron transport problem. Many group structures were designed long ago, and the reasoning behind the creator’s choices may be unknown. In this work, we apply the simulated annealing optimization method to develop improved group structures for a set of test problems. We then use a random forest (a machine learning method) to identify which group structure will be the best for any new problem based on input characteristics, such as geometry and isotopics.
Simulated annealing spans a large solution space before narrowing in on an optimal solution, avoiding local minima by jumping around. Our solution space, however, is large and inconsistent, making finding the optimal group structure infeasible. Instead, we find potentially optimal group structures, ones that yield more accurate solutions than our standard group structures, but are probably not the “best” possible. Group structures are obtained for six classes of problems, ranging from a fast 233U system to a thermal 239Pu system. These were chosen to encompass a series of critical assemblies from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. These optimized group structures were used in PARTISN for a large range of ICSBEP critical assemblies and compared to the traditional Los Alamos National Laboratory group structures. Our reference solution was from 618-group PARTISN runs. The results were used to train a random forest regressor model with bagging, which was then tested on similar benchmarks. The bagging regressor model chose the best group structure from 52% to 65% of the time, and a subjectively “good” group structure up to 91% of the time.