ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Rohan Biwalkar, Kenneth Redus, Adam Stein, Sola Talabi
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 2099-2116
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2204174
Articles are hosted by Taylor and Francis Online.
The current study describes a simulation-based analysis of the atmospheric dispersion of radionuclide fission product particles in the near-field and far-field of a generic, conceptual microreactor, which is a small nuclear reactor with a power output typically ranging from 1 to 20 MW(thermal) and generally lower than 50 MW(electric). The near-field is a distance of up to 100 m from the microreactor while the far-field is a distance of 300 m or beyond from the microreactor. The generic microreactor operates at a pressure close to the ambient pressure. Therefore, in the event of a postulated accident that causes the leakage of radionuclide particles from the microreactor containment into the environment, the radionuclide particles are unlikely to travel too far from the reactor, as opposed to conventional nuclear reactors. The current paper provides estimates of average and 95th-percentile values of the normalized effluent concentration of the atmospheric radionuclide particle dispersion with respect to the source strength in the near-field and far-field of the conceptual microreactor. The computer code Atmospheric Relative CONcentrations in Building Wakes (ARCON96) was used to perform all simulations for the current study. It was observed that the 95th-percentile values of the normalized effluent concentration decrease by an order of magnitude as the receptor distance increases, i.e., from the near-field to the far-field. The dispersed aerosol concentration also decreases with time. A parametric study was performed to understand which input parameters affect the normalized effluent concentration values the most, and a definitive screening design was employed for this purpose. The atmospheric stability class and the distance between the reactor and the receptor were the parameters found to affect the aerosol dispersion characteristics by the greatest extent. The study recommends that the computer code RADTRAD (Radionuclide Transport and Removal And Dose Estimation) be used to estimate the actual dosage over distance using the outputs from ARCON96 as inputs, along with reactor-specific core inventories.