ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
A. Bailly, J.-L. Lecouey, A. Billebaud, S. Chabod, A. Kochetkov, A. Krása, F.-R. Lecolley, G. Lehaut, N. Marie, N. Messaoudi, G. Vittiglio, J. Wagemans
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1961-1971
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2148813
Articles are hosted by Taylor and Francis Online.
The potential use of a pulsed neutron source (PNS) to measure reactivity during nuclear fuel loading as a means to prevent core loading errors has been studied at the GUINEVERE facility. This facility couples the deuteron accelerator GENEPI-3C to the fast neutron subcritical reactor VENUS-F at the Belgian Nuclear Research Center SCK·CEN. The 14-MeV neutrons are produced in the reactor core center via fusion reactions. PNS experiments were performed in five reactor configurations corresponding to the different loading steps of VENUS-F. The evolution of the neutron flux during these PNS experiments was measured by several 235U fission chambers in various positions in the inner and outer reflector and analyzed using the area-ratio method. The results show that, despite strong spatial effects, a strong correlation between the reactivity values given by the area-ratio method and some reference reactivity values remains throughout the reactor unloading. Monte Carlo simulations were first validated by comparison with the data and then used to investigate the sensitivity of the method to a core loading error. First results show that some loading errors could be experimentally detected using a PNS.