ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
FPoliSolutions demonstrates RISE, an RIPB systems engineering tool
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) has held another presentation in its monthly Community of Practice (CoP) series. Former RP3C chair N. Prasad Kadambi opened the October 3 meeting with brief introductory remarks about the RP3C and the need for new approaches to nuclear design that go beyond conventional and deterministic methods. He then welcomed this month’s speakers: Mike Mankosa, a project engineer at FPoliSolutions, and Cesare Frepoli, the company’s president, who together presented “Introduction to RISE: A Digital Framework for Maintaining a Risk-Informed Safety Case for Current and Next Generation Nuclear Power Plants.”
Watch the full webinar here.
N. Colby Fleming, Cole A. Manring, Briana K. Laramee, Jonathan P. W. Crozier, Eunji Lee, Ayman I. Hawari
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1887-1901
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2194195
Articles are hosted by Taylor and Francis Online.
The Full Law Analysis Scattering System Hub (FLASSH) is a modern, advanced code that evaluates the thermal scattering law (TSL) along with accompanying cross sections. FLASSH features generalized methods that accommodate any material structure. Historical approximations including incoherent and cubic approximations have been removed. Instead, the latest release of FLASSH features advanced physics options including distinct effect corrections (one-phonon contributions) and noncubic formulations. Noncubic elastic and inelastic contributions are necessary to accurately evaluate one-phonon contributions. Both noncubic and one-phonon calculations require high-density sampling of the various scattering directions. Optimization and parallelization of these routines were therefore necessary to produce results in a reasonable computational time frame. With these notable improvements to the generalized TSL, FLASSH 1.0 can meet benchmark requirements by permitting realistic comparisons with experiments for both TSLs and the resulting integrated cross sections. Within FLASSH, these high-fidelity TSLs can be applied also to the resonance region to evaluate accurate, material structure-dependent Doppler broadening that captures the observed experimental behavior. Additional features including a graphical user interface (GUI), plotting diagnostics, and formatted output options including ACE files allow users to complete a TSL evaluation with minimal input and maximum flexibility. The user GUI creates input files for FLASSH, reducing user error and also providing built-in error checks. Autofill options and suggested input values help make TSL evaluation accessible to novice users. The FLASSH code is compiled to run on both Windows and Linux platforms with automatic parallelization.