ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
N. Colby Fleming, Cole A. Manring, Briana K. Laramee, Jonathan P. W. Crozier, Eunji Lee, Ayman I. Hawari
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1887-1901
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2194195
Articles are hosted by Taylor and Francis Online.
The Full Law Analysis Scattering System Hub (FLASSH) is a modern, advanced code that evaluates the thermal scattering law (TSL) along with accompanying cross sections. FLASSH features generalized methods that accommodate any material structure. Historical approximations including incoherent and cubic approximations have been removed. Instead, the latest release of FLASSH features advanced physics options including distinct effect corrections (one-phonon contributions) and noncubic formulations. Noncubic elastic and inelastic contributions are necessary to accurately evaluate one-phonon contributions. Both noncubic and one-phonon calculations require high-density sampling of the various scattering directions. Optimization and parallelization of these routines were therefore necessary to produce results in a reasonable computational time frame. With these notable improvements to the generalized TSL, FLASSH 1.0 can meet benchmark requirements by permitting realistic comparisons with experiments for both TSLs and the resulting integrated cross sections. Within FLASSH, these high-fidelity TSLs can be applied also to the resonance region to evaluate accurate, material structure-dependent Doppler broadening that captures the observed experimental behavior. Additional features including a graphical user interface (GUI), plotting diagnostics, and formatted output options including ACE files allow users to complete a TSL evaluation with minimal input and maximum flexibility. The user GUI creates input files for FLASSH, reducing user error and also providing built-in error checks. Autofill options and suggested input values help make TSL evaluation accessible to novice users. The FLASSH code is compiled to run on both Windows and Linux platforms with automatic parallelization.