ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hangbok Choi, Darrin Leer, Matthew Virgen, Oscar Gutierrez, John Bolin
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1758-1768
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2158707
Articles are hosted by Taylor and Francis Online.
General Atomics is developing a new 100-MW(thermal) fast modular reactor (FMR) that provides safe, carbon-free electricity and is capable of incremental capacity additions. The modular design allows it to be factory built and assembled onsite to keep the capital cost low, while the use of dry cooling facilitates siting to complement renewables in nearly any location.
The FMR uses high-assay low-enriched uranium-dioxide fuel encapsulated by recognized irradiation-resistant silicon carbide composite (SiGA®) cladding that is derisked in the current accident-tolerant fuel program. The FMR fuel assembly is a hexagonal fuel bundle of 120 fuel rods. The total length of the fuel assembly is less than 4 m, with an active fuel length of 1.8 m. The fuel assemblies are configured in an annular core that is located and supported by the reactor internals. The coolant material is helium at a normal operating pressure of 7 MPa. The core is surrounded by zirconium silicide (Zr3Si2) and graphite reflector blocks. The fuel, coolant, internals, and reflectors are contained within a reactor pressure vessel.
The preliminary nuclear design and analysis established the arrangement of the active core and reflector blocks. The nuclear design analyses of the FMR defined the design parameters, such as fuel enrichments, excess reactivity, fueling scheme, fuel cycle, power distribution, and control rod worth. The preliminary conceptual design determined the three-batch fueling scheme with the allowable total power peaking factor of 1.5. The average discharge burnup is 100 GW days per ton of uranium.