ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Tommy Coissieux, Julien Politello, Claire Vaglio-Gaudard, Karim Ammar
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1717-1732
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2023.2167471
Articles are hosted by Taylor and Francis Online.
CABRI is an experimental reactor at the French Alternative Energies and Atomic Energy Commission (CEA) used to study fuel behavior during reactivity insertion transients. As these transients have a high level of multiphysics, it is important to develop suitable modeling and simulation tools to simulate them in order to be able to optimize testing and control of experimental conditions. This paper focuses on the development and validation of the neutron deterministic APOLLO3® calculation scheme that is included in the CABRI neutronic/thermal-hydraulic multiphysics coupled simulation tool; it represents the first stage of a stepwise validation process for the CABRI multiphysics simulation tool. The neutron calculation scheme is based on a classical two-step approach. The first step consists of a 281-energy-group flux calculation with the TDT-MOC (Method of Characteristics) solver for nuclear data space and energy collapsing for the different CABRI assembly clusters. The biases on a two-dimensional (2D) core neutron calculation due to self-shielding correction and collapsing on a restricted pattern are investigated by means of comparison with a direct full 2D calculation on a quarter core. The second step relies on a three-dimensional (3D) core calculation. Two approaches are presented. The first one consists of a best-effort approach corresponding to a 3D pin-scale description of the core, performing a transport calculation with the SN solver MINARET. And, the second one, a best-estimate approach, which will be implemented for kinetics calculations, relies on solving a simplified transport SPN equation in the solver MINOS with an exact 3D cell description of the core. The best-estimate calculation scheme is then used to analyze three experimental CABRI transients. A stepwise validation process is followed to quantify the calculation biases on physical parameters such as reactivity, reaction rates, and total core power at each step using static reference calculations with the stochastic code TRIPOLI4® or transient experimental data. The next development stage toward a multiphysics calculation scheme will be implementation and validation of coupling with a core thermal-hydraulic model.