ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Kan Ni, Jason Hou
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1700-1716
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2158706
Articles are hosted by Taylor and Francis Online.
The so-called two-step method involving the consecutive lattice physics and core simulation has been successfully and widely used in large-scale nuclear reactor calculations thanks to its superior computational efficiency and a satisfactory level of accuracy. However, its performance is challenged by the ever-increasing level of heterogeneity in core designs due to the use of infinite lattice approximation in the lattice calculation and its inability to update cross-section sets according to the core environment change.
This paper introduces an alternative approach for light water reactor steady-state core analysis. During the core calculation process, iterations between the local lattice transport calculation and the global core nodal calculation are conducted. These iterations continuously update the boundary condition applied to the lattice model and generate updated cross-section sets. This is done through the iteration between the local lattice transport calculation and the global core nodal simulation. The neutronics high-to-low (Hi2Lo) scheme was formulated using Nuclear Energy Advanced Modeling and Simulation or NEAMS codes, in particular, with the modified PROTEUS-MOC and PROTEUS-NODAL serving as the transport lattice solver and full-core nodal solver, respectively. The verification of the implemented Hi2Lo iterative scheme on the two-dimensional C5G7-TD benchmark problem shows that the Hi2Lo scheme outperforms the two-step approach in terms of prediction accuracy for the key responses of interest (e.g., the system eigenvalue and power distribution) at a computational cost lower than that of the direct full-core transport calculation. To further improve its efficiency, an acceleration method has been developed and implemented for the Hi2Lo approach, and the results indicate that the acceleration method can significantly reduce the run time of a full-core transport solution by a factor of 14 while generating solutions with comparable accuracy.