ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
IAEA’s nuclear security center offers hands-on training
In the past year and a half, the International Atomic Energy Agency has established the Nuclear Security Training and Demonstration Center (NSTDC) to help countries strengthen their nuclear security regimes. The center, located at the IAEA’s Seibersdorf laboratories outside Vienna, Austria, has been operational since October 2023.
P. Cosgrove, E. Shwageraus, J. Leppänen
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1681-1699
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2106732
Articles are hosted by Taylor and Francis Online.
Inline algorithms have been proposed for coupling Monte Carlo neutron transport solvers with several other physics, such as xenon and iodine densities and thermal hydraulics. This paper proposes a new inline algorithm that can be applied to burnup calculations. The algorithm is a modification of the predictor-corrector method, where the corrector-step nuclide densities are converged simultaneously with the fission source. This could, in principle, obviate the need for two full neutronics solutions per time-step while still allowing the accuracy of predictor-corrector methods with improved stability. This paper describes the algorithm and demonstrates its stability properties through a Fourier analysis. Although not unconditionally stable, judicious use of batching and relaxation are shown to greatly improve the algorithm’s stability properties in realistic systems.