ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
P. Cosgrove, E. Shwageraus, J. Leppänen
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1681-1699
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2106732
Articles are hosted by Taylor and Francis Online.
Inline algorithms have been proposed for coupling Monte Carlo neutron transport solvers with several other physics, such as xenon and iodine densities and thermal hydraulics. This paper proposes a new inline algorithm that can be applied to burnup calculations. The algorithm is a modification of the predictor-corrector method, where the corrector-step nuclide densities are converged simultaneously with the fission source. This could, in principle, obviate the need for two full neutronics solutions per time-step while still allowing the accuracy of predictor-corrector methods with improved stability. This paper describes the algorithm and demonstrates its stability properties through a Fourier analysis. Although not unconditionally stable, judicious use of batching and relaxation are shown to greatly improve the algorithm’s stability properties in realistic systems.