ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Peter J. Kowal, Camden E. Blake, Kurt A. Dominesey, Robert A. Lefebvre, Forrest B. Brown, Wei Ji
Nuclear Science and Engineering | Volume 197 | Number 8 | August 2023 | Pages 1600-1620
Technical papers from: PHYSOR 2022 | doi.org/10.1080/00295639.2022.2153617
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are essential components of many reactor physics simulation workflows as high-fidelity continuous-energy neutron transport solvers. Among Monte Carlo radiation transport codes, MCNP is particularly notable due to its diverse simulation capabilities, large user base, and long validation history. Despite being a powerful simulation tool, MCNP provides limited capabilities to allow automated execution, model transformation, or support for user-defined logic and abstractions that limit its compatibility with modern workflows. To better integrate MCNP into a modern scientific workflow, we have developed an intuitive yet full-featured MCNP Application Program Interface (API) in Python, named MCNPy, which provides a specialized set of classes for MCNP input development. Moreover, to guarantee that our reading, writing, and modeling capabilities remain self-consistent (and to render the huge scope of the MCNP API manageable), we have adopted a strategy of model-driven software development in which a generalized model of the MCNP input format has been created. From this generalized model, or “metamodel,” problem-specific implementations such as an engine for input validation or a codebase for programmatic operations may be automatically generated. Since MCNPy primarily acts as a Python front-end to the underlying Java API that directly interfaces with the metamodel, it is intrinsically linked to the metamodel and thus remains maintainable. With MCNPy, users can programmatically read, write, and modify any syntactically valid MCNP input file regardless of its origin. These capabilities allow users to automate complicated tasks like design optimization and model translation for nuclear systems. As examples, this work demonstrates the use of MCNPy to find the critical radius of a plutonium sphere and to translate a 9000+ line MCNP input file into a corresponding OpenMC model.